

Asynchronous MySQL
How Facebook Queries Databases

Chip Turner – chip@fb.com
2014-04-02

Our Codebase

§  A fancy website written in PHP (which became Hack)

§  Grew organically over time

§  Accrued technical debt, then paid it off as we scaled

§  Many backend services written in C++

§  Operations tools (99% Python, 1% PHP, 1% Perl, 1% …)

Our Servers and Network

§  Hundreds of thousands of servers

§  “Many, many” webservers

§  “Many” databases

§  Sharded data model

§  Single master, multiple replicas

§  One copy of each shard in each datacenter

§  Multiple datacenters worldwide

A Sense of Scale

§  PHP code issues 10,000 QPS

§  Connection refused, failovers, solar flares, timeouts, you name it

§  Retries usually make these invisible to the application

§  12,000,000 QPS of actual queries from webservers

§  8,400,000 QPS of Async MySQL queries (up from 0 one year ago)

§  Average query time: 9ms

§  30 hours of queries executed per second

§  This is just PHP – does not include TAO, warehousing, or other use cases

… of errors

DB Client Team

§  Formed a team in early 2013 to focus on database client issues

§  Most original database client code came along as necessary, not designed

§  Problem space is both querying databases and finding the right database
to query; this is surprisingly tricky

§  Primarily OLTP workload

§  Usability, security, reliability are all goals

Security - http://xkcd.com/327/

Security team also focuses on this area; joint responsibility.
They make it secure, we make it easier to use.

Different Kinds of Performance

§  Throughput

§  Queries per second or rows per second

§  Usually more interesting at the database level

§  Latency

§  (Milli)seconds per query

§  Usually more interesting at the client level

§  p50/p95/p99 are all important

§  OLTP is about both, but client performance is mostly about latency

It’s all about the microseconds

§  Memory access: 0.1 microseconds

§  SSD Read: 150 microseconds

§  Network round trip in a datacenter: 500 microseconds

§  Disk Seek: 10,000 microseconds (10 milliseconds)

§  California to Europe round trip: 150,000 microseconds (150 milliseconds)

§  https://gist.github.com/hellerbarde/2843375 - based on work by Peter
Norvig and Jeff Dean

A Picture Helps

0 20 40 60 80 100 120 140 160

Memory Access

SSD Read

Datacenter

Disk Seek

Europe

Thousands

facebook.com (web and mobile)

How most websites work?

§  Webserver receives a request

§  Authenticates user, loads some form of HTML template

§  Usually iterates over “blocks” or “sections” to stitch together HTML

§  Iteration is the keyword – iterate means serial

§  Some sections need to query databases, query memcache, do RPCs, etc

§  Mobile is similar, but less HTML and more APIs

A Typical Facebook Newsfeed

So, how to parallelize?

§  It’s hard!

§  Threads are heavy weight, complex, and risk deadlocks and races

§  Possibly dozens of databases participate in rendering one page

§  Dozens of RPC servers, too

§  And hundreds of memcache servers!

In a Perfect World…

§  We could convert synchronous to asynchronous with minimal code
changes

§  Avoid locking, synchronization, and deadlocks

§  Keep it light weight

§  Keep it readable and maintainable

§  While we’re making wishes, let’s ask for a pony, too

Can we do it? Yes!

§  Use generators for simple code that is re-entrant

§  Very light weight

§  Less overhead, less complexity vs threads

§  Code looks almost the same as synchronous code

§  Fit well into our existing PHP codebase

§  Later added async and await keywords to HHVM/Hack

What is a generator?

§  A generator is a special kind of function where you “yield” values

§  After you yield, other code runs…

§  … but after that code gets its turn, you resume!

§  Co-operative multitasking

§  State (local variables) stay inside function but execution hops in and out

§  Code looks very natural, but amazing things happen

§  In HHVM, we have new keywords: async, await

A PHP Example

An Asynchronous PHP Example

That’s the key idea

§  Cooperative multitasking

§  Code running queries (aka business logic) looks familiar

§  Complexity is in the server framework, not the code you write

§  async functions are cooperative, await lets the server do something else
like other queries

A Visualization of a Random Request

§  X-axis is time

§  Y-axis is depth of concurrency

§  Colors are types of operations

§  Data dependencies prevent total concurrency

Other languages, use cases

§  Python

§  Threads are terrible, so async is a big win

§  Great for operations tooling

§  Uses gevent or another async framework

§  C++

§  Basis for many important services; ads, spam detection, search

§  Threads, but larger scale problems; threads+async is nuclear

§  No generators, mainly callbacks (or fibers, but…)

How does it actually work?

The Magic of Async MySQL

§  Extend libmysqlclient to use non-blocking sockets

§  API indicates when it is waiting for a read or write

§  Expose the file descriptor to feed to UNIX primitives (select/poll/etc)

§  Client library has state machines that go through connecting, querying,
timeouts, etc

§  Same APIs work in async or sync mode; same data structures; very familiar
if you’ve used the library before. Lets you gradually ease into async.

Tricks to help out

§  Re-used existing MySQL test suite in async mode

§  Partial deployment, able to turn on and off on the fly

§  Very tight monitoring; plotting errors as we enabled features

§  Able to turn async into sync on a per-callsite basis if something interacts
badly

§  Initially implemented it “beside” existing MySQL APIs in 5.1; in 5.6, we
refactored and cleaned up (Oracle: check out our patches kthx)

It’s all in these awesome books

Why you should use async

§  You can use webscalesql as your MySQL client library against normal
MySQL/MariaDB servers – this is 100% client side. Use it today without
touching your servers.

§  Using Python+MySQL+Threads? Run, don’t walk, to webscalesql.org

§  Fairly simple way to parallelize important parts of your site

§  Also, it’s fun! Querying a thousand databases in <1 second is addictive.

Want to play with it?

§  webscalesql.org is the way!

§  Diffs pending review for webscalesql. You can grab it here:

§  https://github.com/chipturner/webscalesql-5.6/tree/webscalesql-5.6.17

§  Python extensions are also available:

§  https://github.com/chipturner/MySQLdb1/tree/nonblocking

§  Very committed to webscalesql.org; ask questions there, or of me directly:
chip@fb.com

Questions! Answers!

"
(come visit the Facebook in the Exhibit Hall, get some sweet, sweet swag)"

C example (sorry)

Let’s see a Python example

Other options

§  Use C fibers inside libmysqlclient itself, means state stays on the stack

§  Fibers are a library, not a language feature. Not very compatible,
doesn’t scale as well since most codebases aren’t designed this way
from the beginning

§  Use native Python/PHP client libraries that we could do nonblocking with
directly

§  Even less compatible, each solution was one-off, and diverged from
mainline client library

§  Overall, happy with how it’s worked out and would do it the same way
again. It was more work, but we think it was the most robust option.

