facebook

facebook

Asynchronous MySQL

How Facebook Queries Databases

Chip Turner - chip@fb.com
2014-04-02

Our Codebase

= Afancy website written in PHP (which became Hack)

= Grew organically over time

= Accrued technical debt, then paid it off as we scaled
= Many backend services written in C++

= QOperations tools (99% Python, 1% PHP, 1% Perl, 1% ...)

Our Servers and Network

Hundreds of thousands of servers
“Many, many” webservers
“Many” databases
Sharded data model
Single master, multiple replicas
= One copy of each shard in each datacenter

= Multiple datacenters worldwide

A Sense of Scale

= PHP code issues 10,000 QPS... of errors
= Connection refused, failovers, solar flares, timeouts, you name it
= Retries usually make these invisible to the application
= 12,000,000 QPS of actual queries from webservers
= 8,400,000 QPS of Async MySQL queries (up from o one year ago)
= Average query time: 9gms
= 30 hours of queries executed per second

= Thisis just PHP - does not include TAO, warehousing, or other use cases

DB Client Team

= Formed ateam in early 2013 to focus on database client issues
= Most original database client code came along as necessary, not designed

= Problem spaceis both querying databases and finding the right database
to query; this is surprisingly tricky

= Primarily OLTP workload

= Usability, security, reliability are all goals

Security - http://xkcd.com/327/

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- ?

~ OH.YES. LITTLE
ROBBY TARLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
- YOUVE LEARNED
L TOSANMIZE YOUR
DATARASE INPUTS,

Security team also focuses on this area; joint responsibility.
They make it secure, we make it easier to use.

Different Kinds of Performance

= Throughput

= Queries per second or rows per second

= Usually more interesting at the database level
= Latency

= (Milli)seconds per query

= Usually more interesting at the client level

= p50/p95/p99 are all important

= QOLTPis about both, but client performance is mostly about latency

It’s all about the microseconds

= Memory access: 0.1 microseconds

= SSD Read: 150 microseconds

= Network round trip in a datacenter: 500 microseconds

= Disk Seek: 10,000 microseconds (10 milliseconds)

= Californiato Europe round trip: 150,000 microseconds (150 milliseconds)

= https://gist.github.com/hellerbarde/2843375 - based on work by Peter
Norvig and Jeff Dean

A Picture Helps

Memory Access
SSD Read
Datacenter
Disk Seek

Europe

20

40

60 80
Thousands

100

120

140

160

facebook.com (web and mobile)

How most websites work?

= Webserver receives a request
= Authenticates user, loads some form of HTML template
= Usually iterates over “blocks” or “sections” to stitch together HTML
= [terationis the keyword - iterate means serial
= Some sections need to query databases, query memcache, do RPCs, etc

= Mobileis similar, but less HTML and more APIs

A Typical Facebook Newsfeed

- PDOC Search for people, places and things Q %

[=) update Status (1 Add Photo / Video

Kris Stang
' What’s on your mind? &) Create Event
FAVORITES E 1 MyCalendar - Birthday request
&N e SORT ~
E ews Fee
(=) Messages Betsy Case People You May Know See All
. T .
E Events 2 Majestic birds! — at Arizona-Sonora Desert Museum. I;z:n;x:lill\}dle?mg.W .
> utuad riendas
&) Photos 4 Add Friend
GROUPS
John Barry
o] Photography... 13 7 mutual friends
& Create Group... 48l Add Friend
FRIENDS
Close Friends 7 Facebook © 2012
4% Family 3 English (US) - Privacy - Terms - Cookies
More v
£ Black & White 20+
@ Los Gatos Area 20+
APPS
I]> App Center 3
I8 Music 3
Notes
| Links
« Pokes
Like - Comment - Share - 17 minutes ago -
INTERESTS

& Lizzy Taylor likes this.
ﬁ Subscriptions

EJ} Add Interests...

<& | Write acomment...
i

m Robin Matthews shared a link

So, how to parallelize?

It’s hard!

= Threads are heavy weight, complex, and risk deadlocks and races
= Possibly dozens of databases participate in rendering one page

= Dozens of RPC servers, too

= And hundreds of memcache servers!

In a Perfect World...

= We could convert synchronous to asynchronous with minimal code
changes

= Avoid locking, synchronization, and deadlocks
= Keepitlight weight
= Keep it readable and maintainable

= While we’re making wishes, let’s ask for a pony, too

Canwedo it? Yes!

= Use generators for simple code thatis re-entrant
= Very light weight

= Less overhead, less complexity vs threads
= Code looks almost the same as synchronous code

= Fitwell into our existing PHP codebase

= Lateradded async and await keywords to HHVM/Hack

What is a generator?

= Ageneratoris aspecial kind of function where you “yield” values

= Afteryouyield, other code runs...

= . butafterthat code gets its turn, you resume!

= Co-operative multitasking

= State (local variables) stay inside function but execution hops in and out
= Code looks very natural, but amazing things happen

= |In HHVM, we have new keywords: async, await

A PHP Example

1 <?php

2

3 function check_host($host) {

4 $conn = mysqgl connect($host, ...);

3 $result = mysql query("SHOW STATUS LIKE 'Threads_connected'", $conn);
6 $row = mysql fetch row($result);

7 return $row[O0];

8}

9
10 $total threads = 0;
11 foreach ($host list as $host) {
12 $total_ threads += check_host($host);
13}
14
15 print ("There are $total_ threads threads\n");

An Asynchronous PHP Example

1 <?php

2

3 async function gen_check host($host) {

4 $conn = await gen_mysqgl connect($host, ...);
5 $result = await gen _mysql query("SHOW STATUS LIKE 'Threads_connected'", $conn);
6 $row = await gen fetch row($result);

7 return $row[0];

8}

9

10 $jobs = array();

11 foreach ($host list as $host) {

12 $jobs[]1= gen_check host($host);

13}

14

15 $results = await_all($jobs);

16 $total_ threads = 0;

17

18 foreach ($result as $thread count) {
19 sStotal threads += $result;

20 }

21

22 print("There are $total threads threads\n");

That’s the key idea

= Cooperative multitasking
= Coderunning queries (aka business logic) looks familiar
= Complexity isinthe server framework, not the code you write

= async functions are cooperative, await lets the server do something else
like other queries

A Visualization of a Random Request

il 1 || L_h_‘_ LI (L [0 LLE | L[l

LR

=

= X-axisistime

= Y-axisis depth of concurrency
= Colors are types of operations

= Datadependencies prevent total concurrency

Other languages, use cases

= Python
= Threads are terrible, so asyncis a big win
= Great for operations tooling
= Uses gevent or another async framework
= C++
= Basis for many important services; ads, spam detection, search
= Threads, but larger scale problems; threads+asyncis nuclear

= No generators, mainly callbacks (or fibers, but...)

How does it actually work?

The Magic of Async MySQL

= Extend libmysqlclient to use non-blocking sockets
= APlindicates when it is waiting for aread or write
= Expose the file descriptor to feed to UNIX primitives (select/poll/etc)

= Clientlibrary has state machines that go through connecting, querying,
timeouts, etc

= Same APIs work in async or sync mode; same data structures; very familiar
if you’ve used the library before. Lets you gradually ease into async.

Tricks to help out

= Re-used existing MySQL test suite in async mode
= Partial deployment, able to turn on and off on the fly
= Very tight monitoring; plotting errors as we enabled features

= Able to turnasyncinto syncon a per-callsite basis if something interacts
badly

= [nitially implemented it “beside” existing MySQL APIs in 5.1; in 5.6, we
refactored and cleaned up (Oracle: check out our patches kthx)

It’s all in these awesome books

» Updated Classic!

Advanced
o Programming
W1 the UNIX
\ omnent

Third Edition

W. Richard Stevens
Stephen A. Rago

Programming

The Sockets Networking API

A
vv
>
9
9
@D
O
Z
=
T
(%%}
—
m
3
n
P
@)
!
m
%2}
=
©)
Zz
>
—
Q
©)
<
o
-
=
V4
@)
%2}
m
~
m
%}

SA1¥3S ONILNdWOD TYNOISSI10¥d AFT1SIM-NOSIAAY

BILL FENNER
ANDREW M. RUDOFF

Why you should use async

= You can use webscalesql as your MySQL client library against normal
MySQL/MariaDB servers - this is 100% client side. Use it today without
touching your servers.

= Using Python+MySQL+Threads? Run, don’t walk, to webscalesql.org

= Fairly simple way to parallelize important parts of your site

= Also, it’s fun! Querying a thousand databases in <1 second is addictive.

Want to play with it?

= webscalesql.orgis the way!
= Diffs pending review for webscalesql. You can grab it here:

= https://github.com/chipturner/webscalesql-5.6/tree/webscalesql-5.6.17
= Python extensions are also available:

= https://github.com/chipturner/MySQLdb1/tree/nonblocking

= Very committed to webscalesql.org; ask questions there, or of me directly:
chip@fb.com

Questions! Answers!

(come visit the Facebook in the Exhibit Hall, get some sweet, sweet swag)

facebook

C example (sorry)

har *query) {

, query, strle

NC_NOT_READY) {

Let’s see a Python example

def check _host(host):
conn = MySQLdb.connect(host, ...)
cursor = conn.cursor()
cursor.execute("SHOW STATUS LIKE 'Threads connected'")
result = cursor.fetchall()
return result[0][1]

total threads = ©
for host in open("/etc/hosts.txt"):

total threads += check_host(host)

print("Total threads: %d" % total_threads)

Other options

= Use Cfibersinside libmysqlclient itself, means state stays on the stack

= Fibersarealibrary, not alanguage feature. Not very compatible,
doesn’t scale as well since most codebases aren’t designed this way

from the beginning

= Use native Python/PHP client libraries that we could do nonblocking with
directly

= Even less compatible, each solution was one-off, and diverged from
mainline client library

= Qverall, happy with how it’s worked out and would do it the same way
again. It was more work, but we think it was the most robust option.

